An Optimal Modelling for Unsaturated Seepage
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Abstract For groundwater and moisture seepage, optimization of locations or shapes of hydraulic constructions
{cavities, tunnels, ete.} differs from the classical fluid dynamics. In this paper, a ponded seepage problem is
considered to get an opiimal depth of drains. An optimal shape design is considered using a new {mathematical)

approach.

1. INTRODUCTION

With the advent of FDM - FEM packages [ike MOD-
FLOW, analytic solutions for groundwater flow prob-
lems became a supplementary tool in engineering
practice. However, new environments like Mathe-
matice allow reconsideration of the applicability of
‘old-Tashioned’ analytic techniques which restore from
seemingly ponderous forms info standard buili-in
computer operations. In this paper, we study mainly
optimization probiems which arise in seepage into
drains and cavities, Qur goal is to derive some new
solutions. We focus our interest on one of the most
important characteristics, total rate of waler seeping
into a drain, even though other distributed (flow nets,
specific discharge, moisture, etc.} or integral (erosion
safety factors} characterisiics can be analyzed in a
similar way, For some specific flow patterns we answer
the following guestions: Is there an optimal tunnel
depth providing minimal rate for ponded conditions?
What is the infiuence of cavity shape on the rate and
is there an optimal form providing minimal vate un-
der imposed isoperimetric resirictions? In section 3,
we will show the new technique for deriving the neces-
sary condition for optimality; this part is, in turn, the
sensitivity analysis, tco. We will show the full process
of derivation, since that will help readers to be familiar
with the method more easily. The main tools used are
Taylor expansions, integration by parts, and Green's
formula which civil engineeres know well. Throughout
the paper, we assume steady Darcian flows of incom-
pressible one-phase fluids in rigid porous media,

2. PONDED SEEPAGE

In this section we ireat problems of ponded seepage
in order to illustrate usefulness of Mathematica. Con-
sider an empty drain of radius r located in a homo-
geneous, isctropic half-plane at the depth ¢ under the
soil surface ponded by water with depth H. In the
flow domaln the hydraulic head A(z,y) satisfies the
Laplace equation. We are interested in the value of
total seepage rate g, into the drain and its difference

from the rate g5 of a drain filied with water (see Fig.

1).
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Fig. 1

For the case of a filled drain, Forchheimer found
a formula in 1889 (Forchheimer, 1930) for g¢;.
Polubarinova-Kochina (1977, p.354) approximates the
formula as ¢; = 2rAH/In{2c/r), where AH denotes
the head difference between the soil surface and the
drain contour.

For the case of empty drain (tunnel) Freeze and
Cherry (1979} say that the only theoretical formula
by Goodman et al. for the rate is

ge = 2w AH/[2.31n(2¢/7)].

For the steady regime this formula seems to be suspi-
cious because it leads to the contradiction ge < g5.

To derive the correct formula for an empty drain we
utilize the ’sink-solution’ (Polubarinova - Kochina,
1977}
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where ¢ is the velocity potential, g and d are the sink
strength and depth respectively. Set ¢ = 0 along the
soil surface. Then along the contour of an empty drain
P=¢+y—~ H. In contrast with the case of a filled



drain we search not for an equipotential but for an
isobar p = 0 as the drain contour. According to (1},
we can find the contour equation for the isobar p=10
and can find the drain area 5.

Thanks to Mathematica, we can plot the curve of
fi= 2qg/\f§. For example, for g/ H = 100 we found 2
minimum f; = 5.97 at ¢/H = 15.75. From the graphs
for 10¢;/g. as a function of ¢/H, we can see (Fig. 2)
that the maximal influence of water level in the drain
(minimal value of g /g, s 0.20) occurs at ef H =929
in other words, at this depth influence of the bound-
ary condition along the drain contour on the rate is
most pronounced. Obviously, if the drain is partially
filled its rate g, can be esiimated as g < gp < ¢
(Ilyinsky and Kacimov, 1992a).
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Curve 1 shows d/H.

3. SHAPE OPTIMIZATION

3.1 Unsaturated Flow

In this section, we consider unsaturated flow in terms
of the quasi-linear model and dwell on the effect of the
drain shape on the rate value starting with the classi-
cal Wilson singularity. A comprehensive review of the
model we use was made by Pullan (1990), Clothier
et al {1995). According to the model, the conductiv-
ity k varies exponentially with pressure head A, 1e.,
k = kpe®® where the constants ky and & are saturated
conductivity and sorptivity, respectively. The govern-
ing equation for the matrix flux potential ¢ = Ko
is

i

A(:S—QE;IO

where z is the vertical coordinate oriented downward,

(2

Consider asingle drain placed ‘near’ the origin (0, 0} of
the coordinate system i an infinite porous medium,
Sufficiently far from the drain, ¢ = keo/o; Le., the
porous matrix is at constant pressure with head

b= o tin(ke ko) (obviously, ke < kp to guarantee

100,00

Curve 2 shows f1
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purefy unsaturated seepage). The vertical and hori-
zontal components of velocity are given by

o %
gz 7 8z’
At infinity we have a uniform descendant flow with
velocity keo.

vy = @ -

(3)

Assume thai along the drain contour I pressure is
constant and negative. Hence the corresponding po-
tential ¢, is k./a (obviously, k. < ko should be valid
to provide drainage).

Since the classical studies of ancient Greeks, Saint-
Venant, and Rayleygh shape optimization and corre-
sponding isoperimetric inequalities have been inves-
tigated in many applications (Félya and Szegd 1951,
Pironpeau 1984, Fujii 1990), in particular, for seep-
age flows(Philip et al. 1989, Ilynsky and Kacimov
1992b). The general statement is clear: what form
of the boundary (or its part) of the flow domain pro-
vides extreme {minimal or maximal} flow characteris-
tic (say, rate, uplift force, wetted area, etc.} at pre-
scribed isoperimetric restrictions (for example, length,
area or volume). In the section devoted to 3-D satu-
rated flows we have mentioned one of the results that
dates back to Poincaré (a sphere in an unrestricted
aquifer provides minimal rate in the class of equipo-
tential bodies of prescribed volume). In what follows
we ireat one of the problems of this kind for 2-D unsat-
urated flow in terms of the quasi-linear model. Unlike
the cases above we consider an irrigation cavity which
wets the surrounding porous matrix. To our knowl-
edge, in the analytic solutions {Concer 1958, Philip
1984) for a single cavity wetting unrestricted soil only
cireular and elliptical contours were investigated.

3.2 Problem Statement

Let us study seepage from the contour T' of constant
moisture {pressure} with potential ¢ = ¢, to soil. At
infinity $ = oo, $oo < $e. [ confines the domain {2
outside the cavity and, at the same time it confines
I = R? — T of area S. Outside the cavity (namely in
1) the potential satisfies the steady state infiltration
equation (2} with molsture velocities (3). Designate
the total seepage rate as q,.

We want to determine the shape which provides min-
imal g, (a criterion) at prescribed S (an isoperimetric
restriction), e, ¢oo. First, consider the case of ar-
bitrary cavities (though with sufficiently smooth con-
tours}.

Tt is well known that minimum should satisfy a nec-
essary condition of optimality (for a function of one
variable C'(c) this states dC/dc = 0 where C is the
criterion and ¢ is the control variable} and a sufficient
one (d*C/dc® > 0). In our case cavity shape is the
control function and the criterion depends on infinite
number of variables. It calls for subtle methods of
houndary variations one of which is presented below.



In what follows we derive a necessary condition for
minirmum.

ﬂmx%:é%M$
:wé“?gb-ﬁds-i-afrq&n;ds, (4)

where v, designates the normal component of veloc-
iy, i.e., v, = 7- 7, i = (n,,n,} is the inward normal
{(from the cavity to soil}, and s is the arc length of the
contour {counterclockwise). In {4), of course, ¢ is the
sclution of the following boundary value problem:

&¢wag~§ =0 {0}, (2)
¢=¢. {onT}), {5)
¢ = oo (3t Too). (6)

3.3 Necessary Condition

In this subsection, we derive a necessary condition of
optimality, which, in turn, is the sensitivity analysis.

Let 7(s) = (., 7.) be the tangential vector directed
counterclockwise at 5. Then, 1, = —n., 7 = n,. We
can easily see that

di 1
&ERD @
hence, in turn
. dn, dn,
ds ds ' ds
1

where R denotes the radius of curvature at 5. On T
the formula of integration by parts reads

é\f (s)g(s)ds = j{‘f(s)g (5)ds. {9)

Let us introduce a variation of I'. Let p(s) be a smooth
function of 5. Let € be a number; its absolute value is
small enough. We place segment ¢p{s) on the normal
7l at s such that positive ¢p{s) lies on the normal 7. If
le] is small enough, the end points of the segments
will form a closed curve I'e which and I'y, enclose
a new domain §2,. When we consider the following
boundary-value problem:;

Adt = a%%i {(z,z) € 0} (10)
#° = o (const.) f{z,z) e T (1)
¢* to  ((z,7) €Tw), (12)

we can easily find that the first variation © of ¢ de-
fined by

$° — ¢ = 0 + ofe) {13)
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is the solution of

AG = %?@nm, (14)
8 = «—g—ip {on T, (15)
O = 0 (at ). (16)

On the other hand, we see that the corresponding 7,
is given by

=7+ (—ep'(s)T) 4+ oe) {17)

through geometrical inspection. Similarly, we obtain

ds® = (1 + f—g + o{e)) ds. {18}

Objective functional J* for ¢* is given by

fm_}gmw,ﬁwqa}¢mwﬁ (19)
r L

e

The first term on the right side of (19) is transformed
as follows.

jé gradg® - ds°

2

= f‘ grad(¢ -+ €@ + o(e)) - ntdst
r.
= % grade - _f?ds-i—ef{igrad¢ -
r rlA
8¢ _, , 8% &4 ,
- (—8;—2—112 * 28263: Mefe wnz)}ds

+ 6% grad® - 7ds
.

- f% p'(s)grade - Tds + ofe),

(20

where we used (17) and (18). In order to rewrite {20},
let us introduce an adjoint variable p, as the solution
of the following boundary value problem:

Aps + a%p; =0 {in ©2), (21)
Pe =1 {on T}, (22)
pe =1 {at Too). (23)

Thanks to Green's formula, we can calculate as fol-
lows:

86 Ip.
BAp,— ,,Aedazf‘ (G—————@ )ds
/{1( Pa—pa08) e, P2 T 0
3¢3Pa
= s - el 24
f;grade wds + pananp s, (24)

where we used (15), (16), (22) and (23). Hence, using



(14), (21

jggrad@ CTds 4+
r

3, (15) and (16), we obtain

¢ Opa
rOn dn pds

= / (8Ap, ~ p,A0)da
!

[ (oo soreg
wno—- 54
i

]
5, o+ apa—é—;) da

—j div(#p,9)da
0

:fpa@ahmﬁff .03 - Fds
i Too

= —% ocarﬁ—b—pnzds,
r 9n

where & = (o, 0).

(25)

On the other hand, by integrating by parts, we obtain

3
_ ﬁ:p!(s)gra{igﬁ - Fds = ﬁp(s}a(gradqﬁ?*)ds

= é { (%grad::&) S - égmdqﬁ . '1?} pds.  (26)

Substituting (25) and {26) inte (20}, we obtain

% gradd® - ds® = j{g grade - Wds
r.
07 2 3¢ ‘b,
+€é(82 —}-?88 321>9d5
¢ dp, d¢
—-6}{ (31: 5 F -l-aé}:nzp> ds

s (Garads) - Po4old. 20

N7z +

Simnilarly, we can see that

nidst = f gn,ds
T. T

+f%(}«~¢n+ 9
I sz p@s

= ¢ ¢n.ds + ofe), (28)

since {8¢/8s) vanishes on T. From (27) we see that

‘% gradg® - ds® — jtggradqﬁ CAds
£ r

_ o 0pa | 09
= cé(% ™ o+ ag-nzp)ds
0%¢ , 8% & 4
+C_?£(822 n; +28 aznznm + 612n5)pds
82(;5 5 d2¢ 82¢
mir{j{«(ﬁz? ng 4 2 Pl + 5 2n.i)pds
-+ oe)
3¢ Opa ad
= Bi ;;p&«ag?n;p)ds%—ca% ——pds
+o(e).
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Hence, if we define §J by
JE =T = e6J + ole),

we cbserve that

. E?_‘éapa Qf_ d¢
8 = —jg (811 5 +aannz —a—a—;) pds. (31

Since admissible cavities must satisfy

da = S,

e

(32}

where 5 is the given area of crogs-section of the cavi-
ties, we have
%‘ pds = 0.
r

If § attains minimum gy, §J must vanish for every
infinitesimally small (say, |[pll < 1, || - § is an appro-
priate norm) p which satisfies (33). However, (33) and
(31) is linear in p; this means, in turn, &J must vanish
for every p that satisfies {33}, Thus, we obtain the fol-
lowing necessary condition of minimum, a main result
of this paper:

(33)

Theorem. Jf the cavity boundary T attains a mun-
imum q., then there ezists a constani A (Lagrange
multiplier) such that

8¢ dpa d¢
an On o n

holds at every point on I, Here, ¢ is the solution of
(2), (5), (6) and pa is the solution of (21) - (23).

¢
——a—a—-:)\

dz (34)

4. CONCLUSION

The solution of (2), (5), (6) and the solution of (21) -
(23} are given by infinite series expansions in terms of
modified Bessel functions of second type; it is difficult
to test the condition (34) for these solution analyti-
cally. However, {31) gives the gradient of the objective
function; (31) can be used for numerical calculation of
the optimal shape, Numerical methods for shape op-
timization have not been well developed. The study of
the methods is left yet. As for more general and pro-
totype shape optimization, the readers can refer Fujii
(1990). As for the sufficient conditions, the readers
can refer Belav and Fujii {1997).
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